A Characteristic-Independent Description of Hopf Orders Using Breuil-Kisin Modules

Alan Koch

Agnes Scott College

May 22, 2017

Alan Koch (Agnes Scott College)

Outline

- 2 Breuil-Kisin modules
- 3 Hopf orders
- 4 Hopf algebras killed by [p] in characteristic 0
- 5 A comparison of theories
- 6 Where to go from here

- **(1))) (1)))**

Let:

- *R* be a complete discrete valuation ring, uniformizing parameter π
- *K* = Frac *R*
- $k = R/\pi R$, char k = p > 0
- *H* a finite, flat, abelian *K*-Hopf algebra, rank a power of *p*.

Objectives.

- Obtain a classification of *R*-Hopf orders in *K* using Breuil-Kisin modules
- Relate, when possible, the Breuil-Kisin module classifications to other classifications in special cases
- Obecide whether finding such a classification is worth pursuing in general.

Outline

Overview and objectives

2 Breuil-Kisin modules

3 Hopf orders

- 4 Hopf algebras killed by [p] in characteristic 0
- 5 A comparison of theories
- 6 Where to go from here

< 🗇 🕨 < 🖻 🕨

The most general definition I know

Let:

- W = W(k) ring of Witt vectors
- *R* a complete regular local ring (i.e., $\dim_k \mathfrak{m}/\mathfrak{m}^2 = \dim R =: r$)
- $\mathfrak{S} = W[[u_1, u_2, \dots, u_r]], \ \mathfrak{S}_n = \mathfrak{S}/p^n \mathfrak{S}, \ n \geq 1$
- $\sigma : \mathfrak{S} \to \mathfrak{S}$ extend the Frobenius on $W: \sigma(u_i) = u_i^p$
- $\sigma:\mathfrak{S}_n\to\mathfrak{S}_n$ similar
- $E = E(u) \in \mathfrak{S}$ satisfy E(0) = p and $R = \mathfrak{S}/E\mathfrak{S}$
- (for \mathfrak{M} an \mathfrak{S} -module) $\mathfrak{S} \otimes_{\sigma} \mathfrak{M} = \mathfrak{S} \otimes_{\mathfrak{S}} \mathfrak{M}$ with

$$s_1 \otimes_{\sigma} s_2 m = s_1 \sigma(s_2) \otimes_{\sigma} m; s_1, s_2 \in \mathfrak{S}, m \in \mathfrak{M}.$$

A Breuil-Kisin module relative to $\mathfrak{S} \to R$ is a triple $(\mathfrak{M}, \varphi, \psi)$ where:

- M is an G-module which
 - is finitely generated over \mathfrak{S}
 - is killed by a power of p
 - has projective dimension at most one
- $\varphi: \mathfrak{M} \to \mathfrak{M}^{\sigma}, \ \psi: \mathfrak{M}^{\sigma} \to \mathfrak{M}$ are \mathfrak{S} -module maps with

$$arphi\psi=E$$
 and $arphi\psi=E_{
m o}$, where $arphi$ is the second

A Breuil-Kisin module relative to $\mathfrak{S} \to R$ is a triple $(\mathfrak{M}, \varphi, \psi)$ where:

- M is an G-module which
 - is finitely generated over \mathfrak{S}
 - is killed by a power of p
 - has projective dimension at most one
- $\varphi:\mathfrak{M}\to\mathfrak{M}^{\sigma},\ \psi:\mathfrak{M}^{\sigma}\to\mathfrak{M}$ are \mathfrak{S} -module maps with

$$\varphi \psi = E \text{ and } \varphi \psi = E.$$

Theorem (de Jong, case char R = p; Kisin, case char R = 0)

The category of Breuil-Kisin modules relative to $\mathfrak{S} \to R$ is equivalent to the category of finite, flat, abelian R-Hopf algebras.

The proofs are in terms of Breuil modules and/or group schemes, and not transparent. We write \mathfrak{M} for $(\mathfrak{M}, \varphi, \psi)$ when the maps are understood.

< ロ > < 同 > < 回 > < 回 >

A very special case

Let:

- W = W(k) ring of Witt vectors, $W_{n-1} = W/p^n W$
- R = k a perfect field, $r = \dim k = 0$ (recall: Krull dimension)
- $\mathfrak{S} = W[[u_1, u_2, \dots, u_r]] = W, \ \mathfrak{S}_n = \mathfrak{S}/p^n \mathfrak{S} = W_{n-1}, \ n \ge 1$
- $\sigma: \mathfrak{S} \to \mathfrak{S}$ is Frobenius on W
- $\sigma:\mathfrak{S}_n\to\mathfrak{S}_n$ similar
- $E = E(u) \in \mathfrak{S}$ satisfy E(0) = p and $R = \mathfrak{S}/E\mathfrak{S}$: E = p.
- (for \mathfrak{M} an \mathfrak{S} -module) $\mathfrak{S} \otimes_{\sigma} \mathfrak{M} \cong \mathfrak{M}$.

A Breuil-Kisin module relative to $\mathfrak{S} \to k$ is a triple $(\mathfrak{M}, \varphi, \psi)$ where:

- M is a finitely generated W=module killed by a power of p
- $F: \mathfrak{M} \to \mathfrak{M}$ is σ -semilinear, $V: \mathfrak{M} \to \mathfrak{M}$ is σ^{-1} -semilinear with

$$FV = VF = p.$$

This should look familiar: classic Dieudonné modules.

The most general definition we'll use from now on

Return to the usual notation: R a complete dvr, etc. So dim R = 1 and

- $\mathfrak{S} = W[[u]], \ \mathfrak{S}_n = W[[u]]/p^n W[[u]], \ n \ge 1$
- $\sigma:\mathfrak{S}\to\mathfrak{S}$ given by $\sigma(u)=u^p$
- $\sigma:\mathfrak{S}_n\to\mathfrak{S}_n$ similar
- $E = E(u) \in \mathfrak{S}$ satisfies E(0) = p and $R = \mathfrak{S}/E\mathfrak{S}$.

A Breuil-Kisin module relative to $\mathfrak{S} \to R$ is a triple $(\mathfrak{M}, \varphi, \psi)$ where:

- \mathfrak{M} is an \mathfrak{S} -module which
 - $\bullet\,$ is finitely generated over $\mathfrak{S}\,$
 - is killed by a power of p
 - has no u-torsion

•
$$\varphi : \mathfrak{M} \to \mathfrak{M}^{\sigma}, \ \psi : \mathfrak{M}^{\sigma} \to \mathfrak{M} \text{ are } \mathfrak{S}\text{-module maps with}$$

 $\psi \varphi$
 $\varphi \psi = E \text{ and } \varphi \psi = E.$

A (10) A (10)

Specialization: primitively generated Hopf algebras

This should also look familiar.

Let R = k[[T]], and suppose *H* is an *R*-Hopf algebra generated by its primitive elements.

Then $\psi = 0$.

E(u) = p since $W[[u]]/pW[[u]] \cong R$.

Since $pm = Em = \psi(\varphi(m)) = 0$, $m \in \mathfrak{M}$, it follows that $p\mathfrak{M} = 0$.

Thus, a Breuil-Kisin module is a pair (\mathfrak{M}, φ) such that

- 𝔐 is a finitely generated 𝔅₁ = k[[u]] ≅ R-module which has no u-torsion (so free, finite rank over R)
- $\varphi: \mathfrak{M} \to \mathfrak{M}^{\sigma}$ is a linear map (or $\varphi: \mathfrak{M} \to \mathfrak{M}$ is a semilinear map).

These are the Dieudonné modules ($F = \varphi$) from my Exeter talk.

Specialization: characteristic zero DVRs

Let R/W(k) be totally ramified, degree e, Eis. poly. $E_0(u)$. Let $c_0 = p^{-1}E_0(0) \in W^{\times}$. $E(u) = c_0^{-1}E_0(u) \equiv c_0^{-1}u^e \mod p\mathfrak{S}$. Let $(\mathfrak{M}, \varphi, \psi)$ be a Breuil-Kisin module. So $\varphi \psi = E$, $\psi \varphi = E$. It can be shown that φ is injective, hence $\psi = \varphi^{-1}E$. Thus, a Breuil-Kisin module is a pair (\mathfrak{M}, φ) where

- \mathfrak{M} is an \mathfrak{S} -module which
 - is finitely generated over S
 - is killed by a power of p
 - has no u-torsion
- $\varphi : \mathfrak{M} \to \mathfrak{M}$ is semilinear such that for all $m \in \mathfrak{M}$ there exist $s_i \in \mathfrak{S}, x_i \in \mathfrak{M}$ such that

$$Em = \sum_{i=0}^{n} s_i \varphi(x_i).$$

A (10) A (10)

Pick $0 \le i \le e$, $b \in k^{\times}$.

Let $\mathfrak{M} = \mathfrak{S}_1 \mathbf{e} = k[[u]]\mathbf{e}$, and define φ to be the semilinear map with $\varphi(\mathbf{e}) = bu^i \mathbf{e}$.

Then

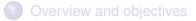
$$\boldsymbol{E}\boldsymbol{e} = \boldsymbol{c}_0^{-1}\boldsymbol{u}^{\boldsymbol{e}}\boldsymbol{e} = \boldsymbol{c}_0^{-1}\boldsymbol{b}^{-1}\boldsymbol{u}^{\boldsymbol{e}-\boldsymbol{i}}\varphi(\boldsymbol{e}),$$

and (\mathfrak{M}, φ) is a Breuil-Kisin module.

This is a complete classification of rank *p* Breuil-Kisin modules, though if $b_1 b_2^{-1} \in k^{p-1}$, $b_1 b_2 \neq 0$, then their modules are isomorphic.

(Morphisms: \mathfrak{S} -module maps, compatible with the φ 's and ψ 's.)

Outline



2 Breuil-Kisin modules

- 4 Hopf algebras killed by [p] in characteristic 0
- 5 A comparison of theories
- 6 Where to go from here

< 4 →

- E 🕨

Recall $K = \operatorname{Frac} R$.

Let H_1 , H_2 be *R*-Hopf algebras (abelian, flat) of the same *p*-power rank.

We say H_1 and H_2 are *generically isomorphic* if there exists an R-algebra monomorphism $H_1 \rightarrow H_2$ which becomes an isomorphism when extended to a K-algebra map $KH_1 \rightarrow KH_2$.

So, H_1 generically isomorphic to $H_2 \Rightarrow H_1, H_2$ are *R*-Hopf orders in the same *K*-Hopf algebra.

Equivalently, if \mathfrak{M}_1 and \mathfrak{M}_2 are the Breuil-Kisin modules for H_1 and H_2 and there exists a \mathfrak{S} -module map $\mathfrak{M}_1 \to \mathfrak{M}_2$ which becomes an isomorphism when inverting u, then H_1 , H_2 are generically isomorphic.

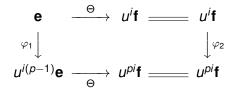
Example: characteristic 0

R is a totally ramified extension of W(k) of degree *e*. Pick $1 \le i \le e/(p-1)$. Let $\mathfrak{M}_1 = \mathfrak{S}_1 \mathbf{e}$, $\mathfrak{M}_2 = \mathfrak{S}_1 \mathbf{f}$. Let

$$\varphi_1(\mathbf{e}) = u^{i(p-1)}\mathbf{e}, \ \varphi_2(\mathbf{f}) = \mathbf{f}$$

and define $\Theta: \mathfrak{M}_1 \to \mathfrak{M}_2$ by $\Theta(\mathbf{e}) = u^i \mathbf{f}$.

Then Θ is a (mono)morphism of Breuil-Kisin modules since



Thus, the corresponding Hopf algebras are generically isomorphic.

Example: characteristic p

So R = k[[T]], E(u) = p. For j = 1, 2, let $\mathfrak{M}_1 = \mathfrak{S}_1 \mathbf{e}$, $\mathfrak{M}_2 = \mathfrak{S}_1 \mathbf{f}$. Note $E\mathfrak{M} = p\mathfrak{M} = 0$.

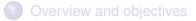
Pick $i \ge 1$, let

$$arphi_1(\mathbf{e}) = \mathbf{0}, \ \psi(\mathbf{1} \otimes_\sigma \mathbf{e}) = u^{i(p-1)}\mathbf{e}, \ \varphi_2(\mathbf{f}) = \mathbf{0}, \ \psi_2(\mathbf{1} \otimes_\sigma \mathbf{f}) = \mathbf{f},$$

and define $\Theta: \mathfrak{M}_1 \to \mathfrak{M}_2$ by $\Theta(\mathbf{e}) = u^i \mathbf{f}$. Then,

and the corresponding Hopf algebras are generically isomorphic.

Outline



- 2 Breuil-Kisin modules
- 3 Hopf orders
- 4 Hopf algebras killed by [p] in characteristic 0
- 5 A comparison of theories
- 6 Where to go from here

< 47 ▶

Killed by [p] is not really killed by [p]

Let *H* be an *R*-Hopf algebra with Breuil-Kisin module \mathfrak{M} .

Recall that $[r]: H \rightarrow H, r \ge 1$ is defined recursively by

$$[r](h) = \operatorname{mult}([r-1] \otimes 1)\Delta(h).$$

We say *H* is *killed by p* if [*p*] is the counit map $\varepsilon : H \to R$.

(Alternatively, the group scheme Spec H is killed by p.)

Example. $RC_{p} = R\langle \sigma \rangle$ is killed by [p] since $[p](\sigma) = \sigma^{p} = 1 = \varepsilon(\sigma)$.

H is killed by [*p*] if and only if $p\mathfrak{M} = 0$.

So, *H* is killed by [*p*] iff \mathfrak{M} is a module over $\mathfrak{S}_1 = k[[u]]$, a PID.

Thus \mathfrak{M} is a free \mathfrak{S}_1 -module, and rank_{*R*} $H = p^{\operatorname{rank}_{\mathfrak{S}_1} \mathfrak{M}}$.

Let $\mathfrak{M} = \bigoplus_{i=1}^{n} \mathfrak{S}_{1} \mathbf{e}_{i} = \bigoplus_{i=1}^{n} k[[u]]\mathbf{e}_{i}$.

Pick $A = [a_{i,j}] \in M_n(R)$, and let $\varphi_A : \mathfrak{M} \to \mathfrak{M}$ be the semilinear map

$$arphi_{\mathcal{A}}(\mathbf{e}_i) = \sum_{j=1}^n a_{j,i}\mathbf{e}_j$$

That is, $\varphi_A(\mathbf{e}_i) = A\mathbf{e}_i$ when \mathbf{e}_i is represented as a standard basis vector.

Under what conditions is $(\mathfrak{M}, \varphi_A)$ a Breuil-Kisin module?

$$\varphi_{\mathcal{A}}(\mathbf{e}_i) = \mathcal{A}\mathbf{e}_i$$

We require $\{s_{i,j}\} \subset k[[u]]$ such that

$$E\mathbf{e} = \sum_{j=1}^{n} s_{j,i} \varphi_{\mathcal{A}}(\mathbf{e}_{j}),$$

that is,

$$c_0^{-1} u^e \mathbf{e}_i = \sum_{j=1}^n \sum_{\ell=1}^n s_{j,i} a_{\ell,j} \mathbf{e}_\ell = \sum_{\ell=1}^n \sum_{j=1}^n a_{\ell,j} s_{j,i} \mathbf{e}_\ell$$

Let $S = [s_{i,j}]$. Then we need $c_0^{-1} u^e I = AS$.

Proposition

 $(\mathfrak{M}, \varphi_A)$ determines a Breuil-Kisin module structure if and only if $u^e A^{-1} \in M_n(k[[u]])$.

Note that A is necessarily invertible in $M_n(k((u)))$.

Alan Koch (Agnes Scott College)

Suppose $(\mathfrak{M}, \varphi_A)$ and $(\mathfrak{M}, \varphi_B)$ are Breuil-Kisin module structures on $\mathfrak{M} = \bigoplus_{i=1}^n k[[u]] \mathbf{e}_i$.

Let Θ be a k[[u]]-linear endomorphism of \mathfrak{M} , and write

$$\Theta(\mathbf{e}_i) = \sum_{j=1}^n \theta_{j,i} \mathbf{e}_i.$$

Let $\Theta \in M_n(k[[u]])$ also represent the matrix $\Theta = [\theta_{i,j}]$.

What are the conditions on Θ to make it a morphism of Breuil-Kisin modules?

Let
$$A = [a_{i,j}], B = [b_{i,j}].$$

We have:

So we require

$$\Theta A = B \Theta^{(p)}$$

where $\Theta^{(p)} = [\theta_{i,j}^p]$.

æ

イロト イ団ト イヨト イヨト

Let $A, B, \Theta \in \operatorname{GL}_n(k((u))) \cap M_n(k[[u]])$, and suppose

- **1** $u^e A^{-1} \in M_n(k[[u]])$
- 2 $u^e B^{-1} \in M_n(k[[u]])$

Then the Hopf algebras corresponding to $(\mathfrak{M}, \varphi_A), (\mathfrak{M}, \varphi_B)$ are orders in the same *K*-Hopf algebra.

Note. If $\Theta \in M_n(k[[u]])^{\times}$, i.e., det $\Theta \in k[[u]]^{\times}$, then $(\mathfrak{M}, \varphi_A) \cong (\mathfrak{M}, \varphi_B)$.

Flashback

Exeter talk, 2015.

Overview for all n

- Pick a K-Hopf algebra H, and find the $B \in M_n(K)$ which is used in the construction of its K-Dieudonné module.
- Find $A \in M_n(R)$ such that $\Theta A = B \Theta^{(p)}$ for some $\Theta \in GL_n(K)$. (One such example: $A = B, \Theta = I$.)
- Construct the R-Dieudonné module corresponding to A.
- Construct the *R*-Hopf algebra *H*_A corresponding to this Dieudonné module.
- The algebra relations on H_A are given by the matrix A.
- H_A can be viewed as a Hopf order in H using Θ .
- $H_{A_1} = H_{A_2}$ if and only if $\Theta^{-1}\Theta'$ is an invertible matrix in R, where

$$\Theta A_1 = B \Theta^{(p)}$$
 and $\Theta' A_2 = B(\Theta')^{(p)}$.

Alternatively, $H_{A_1} = H_{A_2}$ if and only if $\Theta' = \Theta U$ for some $U \in M_n(R)^{\times}$.

Alan Koch (Agnes Scott College)

Primitively generated Hopf orders in characteristic p.,

Alan Koch (Agnes Scott College)

29/47

An example: Hopf orders in KC_{ρ}

Fact 1. The Breuil-Kisin module corresponding to RC_{ρ} is

 $\mathfrak{M} = k[[u]]\mathbf{e}, \ \varphi(\mathbf{e}) = u^{e}\mathbf{e}.$

Fact 2. Any Hopf order in KC_p contains RC_p , so we need to construct 1×1 "matrices" *B* such that

- $u^e B^{-1} \in k[[u]]$
- There exists $\Theta \in k[[u]], \ \Theta \neq 0$ such that $u^e \Theta = \Theta^p B$.

So, we may pick $0 \neq \Theta \in k[[u]]$, and let $B = u^e \Theta^{1-p}$. If

•
$$u^e B^{-1} = \Theta^{p-1} \in k[[u]]$$
 (true)

•
$$u^e \Theta^{1-p} \in k[[u]],$$

then $(k[[u]], \varphi_B)$ gives a Hopf order, different from RC_{ρ} iff $\Theta \in uk[[u]]$.

イロン イ理 とくほ とくほ とう

$B = u^e \Theta^{1-p}, \ u^e \Theta^{1-p} \in k[[u]]$

WLOG, let $\Theta = u^i$.

Then

$$B = u^e \Theta^{1-p} = u^{e+i(1-p)} = u^{e-(p-1)i},$$

which is in k[[u]] if and only if $0 \le i \le e/(p-1)$.

The resulting Hopf algebra H_i is the Larson order

$$H_{i} = R\left[\frac{\sigma-1}{\pi^{i}}\right] \subseteq \mathsf{K}\langle\sigma\rangle = \mathsf{K}C_{\rho}.$$

Note. If, e.g., $\Theta = bu^i$ for some $b \in k^{\times}$ then $B = b^{1-p}u^{e-(p-1)i}$ and the Hopf algebra is the same.

・ロト ・四ト ・ヨト ・ヨト

Fact 1. The Breuil-Kisin module corresponding to RC_p^2 is

$$\mathfrak{M} = k[[u]]\mathbf{e}_1 \oplus k[[u]]\mathbf{e}_2, \ \varphi(\mathbf{e}_i) = u^e \mathbf{e}_i, \ i = 1, 2,$$

so the matrix representing φ is $u^e I$.

Fact 2. Any Hopf order in KC_p^2 contains RC_p^2 , so we need to construct matrices *B* such that

- $u^e B^{-1} \in M_n(k[[u]])$
- There exists $\Theta \in \operatorname{GL}_n(k((u))) \cap M_n(k[[u]])$ such that $\Theta u^e I = B \Theta^{(p)}$.

Fact 2. Any Hopf order in KC_p^2 contains RC_p^2 , so we need to construct matrices *B* such that

- $u^e B^{-1} \in M_n(k[[u]])$
- There exists $\Theta \in GL_n(k((u))) \cap M_n(k[[u]])$ such that $u^e \Theta = B\Theta^{(p)}$.

Alternatively, pick $\Theta \in GL_n(k((u))) \cap M_n(k[[u]])$ and *define*

 $B = u^e \Theta(\Theta^{(p)})^{-1}.$

It then suffices to show

$$B = u^e \Theta(\Theta^{(p)})^{-1} \in M_n(k[[u]])$$
$$u^e B^{-1} = \Theta^{(p)} \Theta^{-1} \in M_n(k[[u]]).$$

・ 何 ト ・ ヨ ト ・ ヨ ト …

WLOG, let
$$\Theta = \begin{bmatrix} u^i & 0 \\ \theta & u^j \end{bmatrix}$$
, $i, j \ge 0, \ \theta \in k[[u]]$. Then

$$B = u^{e} \Theta(\Theta^{(p)})^{-1} = \begin{bmatrix} u^{e-(p-1)i} & 0\\ u^{e-pi}\theta - u^{e-pi-(p-1)j}\theta^{p} & u^{e-(p-1)j} \end{bmatrix}$$
$$\Theta^{-1}\Theta^{(p)} = \begin{bmatrix} u^{(p-1)i} & 0\\ u^{-j}\theta^{p} - u^{(p-1)i-j}\theta & u^{(p-1)j} \end{bmatrix},$$

so we need

$$\begin{split} i, j &\leq e/(p-1) \\ u^e \theta &\equiv u^{e-(p-1)j} \theta^p \bmod u^{pi} k[[u]] \\ \theta^p &\equiv u^{(p-1)i} \theta \bmod u^j k[[u]]. \end{split}$$

Note that setting $\theta = 0$ gives Larson orders.

æ

イロト イ団ト イヨト イヨト

Can we make the correspondence explicit?

Alan Koch (Agnes Scott College)

2

イロト イ団ト イヨト イヨト

Can we make the correspondence explicit?

No.

Alan Koch (Agnes Scott College)

$$\Theta = \begin{bmatrix} u^{i} & 0 \\ \theta & u^{j} \end{bmatrix}, B = \begin{bmatrix} u^{e-(p-1)i} & 0 \\ u^{e-pi}\theta - u^{e-pi-(p-1)j}\theta^{p} & u^{e-(p-1)j} \end{bmatrix}$$

What is the Hopf order in $H = K[\langle \sigma_1, \sigma_2 \rangle]$?

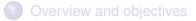
$$\varphi_B(\mathbf{e}_1) = u^{e-(p-1)i}\mathbf{e}_1 + (u^{e-pi}\theta - u^{e-pi-(p-1)j}\theta^p)\mathbf{e}_2$$
$$\varphi_B(\mathbf{e}_2) = u^{e-(p-1)j}\mathbf{e}_2$$

Note that $(\mathfrak{M}, \varphi_B)$ is in a short exact sequence of Breuil-Kisin modules

$$0 \to (\mathfrak{S}_1, \varphi_{(e-(p-1)j)I}) \to (\mathfrak{M}, \varphi_B) \to (\mathfrak{S}_1, \varphi_{(e-(p-1)i)I}) \to 0$$

and the Hopf order corresponding to \mathfrak{M} is in $\operatorname{Ext}^{1}(R[\frac{\sigma_{1}-1}{\pi^{i}}], R[\frac{\sigma_{2}-1}{\pi^{j}}])$.

Outline



- 2 Breuil-Kisin modules
- 3 Hopf orders
- 4 Hopf algebras killed by [p] in characteristic 0
- 5 A comparison of theories
 - 6 Where to go from here

< 47 ▶

Recall $c_0 E \equiv u^e \mod p\mathfrak{S}$.

Fact 1. The Breuil-Kisin module corresponding to $(RC_p^2)^*$ is

$$\mathfrak{M} = k[[u]]\mathbf{e}_1 \oplus k[[u]]\mathbf{e}_2, \ \varphi(\mathbf{e}_i) = c_0\mathbf{e}_i, \ i = 1, 2,$$

so the matrix representing φ is $c_0 I$.

Fact 2. Any Hopf order in $(KC_p^2)^*$ is contained in $(RC_p^2)^*$, so we need to construct matrices *A* such that

•
$$u^e A^{-1} \in M_2(k[[u]])$$

• $\Theta A = c_0 \Theta^{(p)}$ for some $\Theta \in GL_2(k[[u]]) \cap M_2(k[[u]])$.

•
$$u^e A^{-1} \in M_2(k[[u]])$$

• $\Theta A = c_0 \Theta^{(p)}$ for some $\Theta \in GL_2(k[[u]]) \cap M_2(k[[u]])$.

So picking $\Theta \in GL_2(k[[u]]) \cap M_2(k[[u]])$ and setting $A = c_0 \Theta^{-1} \Theta^{(p)}$ gives a Hopf order if and only if

•
$$c_0 u^e A^{-1} = u^e (\Theta^{(p)})^{-1} \Theta \in M_2(k[[u]])$$

• $\Theta^{-1}\Theta^{(p)} \in M_2(k[[u]]).$

$\overline{u^{e}(\Theta^{(p)})^{-1}\Theta \in M_{2}}(k[[u]]), \ \Theta^{-1}\Theta^{(p)} \in M_{2}(k[[u]])$

WLOG, let
$$\Theta = \begin{bmatrix} u^i & 0 \\ \theta & u^j \end{bmatrix}$$
.
Then

$$u^{e}(\Theta^{(p)})^{-1}\Theta = \begin{bmatrix} u^{e-(p-1)i} & 0\\ u^{e-pi}\theta - u^{e-pi-(p-1)j}\theta^{p} & u^{e-(p-1)j} \end{bmatrix}$$
$$\Theta^{-1}\Theta^{(p)} = \begin{bmatrix} u^{(p-1)i} & 0\\ u^{-j}\theta^{p} - u^{(p-1)i-j}\theta & u^{(p-1)j} \end{bmatrix},$$

so we require

$$egin{aligned} &i,j \leq e/(p-1) \ u^e &i \equiv u^{e-(p-1)j} heta^p egin{aligned} & ext{mod} & u^{pi}k[[u]] \ & heta^p \equiv u^{(p-1)i} heta egin{aligned} & ext{mod} & u^j k[[u]]. \end{aligned}$$

æ

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Hopf orders in
$$(\mathcal{K}C_p^2)^*$$
 correspond to matrices $\begin{bmatrix} T^i & 0\\ \theta & T^j \end{bmatrix}$, $\theta \in k[[T]]$ such that
 $T^{-j}\theta^p - T^{(p-1)i-j}\theta \in k[[T]]$,

$$\theta^p \equiv T^{(p-1)i}\theta \mod T^j k[[T]].$$

2

イロト イ団ト イヨト イヨトー

Characteristic 0	Characteristic p
$ \begin{aligned} \theta^p &\equiv u^{(p-1)i\theta} \bmod u^j k[[u]] \\ 0 &\leq i, j \leq e/(p-1) \\ u^e \theta &\equiv u^{e-(p-1)j\theta^p} \bmod u^{pi} k[[u]] \end{aligned} $	$ \theta^{p} \equiv T^{(p-1)i}\theta \mod T^{j}k[[T]] $ $ 0 \le i,j $

So characteristic *p* behaves like characteristic zero with *e* sufficiently large.

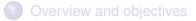
→ ∃ →

Characteristic 0 killed by [<i>p</i>]	Characteristic <i>p</i> primitively generated
$egin{aligned} A,B \in M_n(k[[u]]) \ &\Theta \in \operatorname{GL}_n(k((u))) \cap M_n(k[[u]]) \ &\Theta A = B\Theta^{(p)} \ &u^e A^{-1}, \ u^e B^{-1} \in M_n(k[[u]]) \end{aligned}$	$egin{aligned} & A, B \in M_n(k[[u]]) \ & \Theta \in \operatorname{GL}_n(k((u))) \cap M_n(k[[u]]) \ & \Theta A = B \Theta^{(p)} \end{aligned}$

Characteristic p behaves like characteristic 0 with e sufficiently large, provided A, B invertible.

A singular \Rightarrow the Hopf algebra has nilpotent elements.

Outline



- 2 Breuil-Kisin modules
- 3 Hopf orders
- 4 Hopf algebras killed by [p] in characteristic 0
- 5 A comparison of theories
- 6 Where to go from here

< 4 →

.

Ideas:

- Establish direct connection between "characteristic 0 killed by [*p*]" and "characteristic *p* with primitively generated dual".
- Establish connections when the Hopf algebras are not killed by [p].
- Determine connections with/applications to other works
- Decide whether this is worth pursuing.

We discuss each in greater detail.

"char. 0 killed by [p]" & "char. p with prim. gen. dual"

If *H* is a k[[T]]-Hopf algebra with primitively generated dual and Breuil-Kisin module \mathfrak{M} , then $\varphi : \mathfrak{M} \to \mathfrak{S} \otimes_{\sigma} \mathfrak{M}$ is trivial.

Thus, a Breuil-Kisin module is determined by (\mathfrak{M}, ψ) where $\psi : \mathfrak{S} \otimes_{\sigma} \mathfrak{M} \to \mathfrak{M}$ is any \mathfrak{S} -linear map.

We can (presumably) describe ψ in terms of matrices and conjecture:

Characteristic 0 killed by [<i>p</i>]	Characteristic <i>p</i> dual primitively generated
$egin{aligned} & A, B \in M_n(k[[u]]) \ & \Theta \in \operatorname{GL}_n(k((u))) \cap M_n(k[[u]]) \ & \Theta A = B\Theta^{(p)} \ & u^e A^{-1}, \ u^e B^{-1} \in M_n(k[[u]]) \end{aligned}$	$egin{aligned} & A, B \in M_n(k[[u]]) \ & \Theta \in \operatorname{GL}_n(k((u))) \cap M_n(k[[u]]) \ & \Theta A = B \Theta^{(p)} \end{aligned}$

Connections when the Hopf algebras survive [p]

This seems much harder. Suppose $H = KC_{p^2}$. Then

Theorem (K., 2012)

Let $0 \leq j_2 < j_1 \leq e/(p-1)$ and pick $f \in k((u))$ such that

$$u^{j_1-pj_2}(c_0E(u)-u^e)/p + \left(f^p - u^{-j_2(p-1)}f\right)u^{e+j_1} \in k[[u]]$$

 $... p_{i_1} + (p-1)_{i_2} = 0$ $... p_{i_1} = -1 \cdot [1 \cdot ... 1]$

・ロト ・ 四ト ・ ヨト ・ ヨト …

Let $\mathfrak{M} = \mathfrak{S}_2 \mathbf{e}_1 + \mathfrak{S}_2 \mathbf{e}_2$ with $p \mathbf{e}_2 = u^{j_1 - j_2} \mathbf{e}_1$. Let

$$\varphi_{\mathfrak{M}} \left(\mathbf{e}_{1} \right) = u^{e - (p-1)j_{1}} \mathbf{e}_{1}$$

$$\varphi_{\mathfrak{M}} \left(\mathbf{e}_{2} \right) = \left(f^{p} - u^{-(p-1)j_{2}} f \right) u^{e+j_{1}} \mathbf{e}_{1} + u^{-(p-1)j_{2}} E \mathbf{e}_{2}$$

Then $(\mathfrak{M}, \varphi_{\mathfrak{M}})$ of this form correspond to the orders in KC_{p^2} .

char 0 and char p

$$\begin{split} \mathfrak{M} &= \mathfrak{S}_{2} \mathbf{e}_{1} + \mathfrak{S}_{2} \mathbf{e}_{2}, \, p \mathbf{e}_{2} = u^{j_{1}-j_{2}} \mathbf{e}_{1}.\\ \varphi_{\mathfrak{M}} \left(\mathbf{e}_{1} \right) &= u^{e-(p-1)j_{1}} \mathbf{e}_{1}\\ \varphi_{\mathfrak{M}} \left(\mathbf{e}_{2} \right) &= \left(f^{p} - u^{-(p-1)j_{2}} f \right) u^{e+j_{1}} \mathbf{e}_{1} + u^{-(p-1)j_{2}} E \mathbf{e}_{2}\\ \end{split}$$
The sum is not direct, the linear algebra approach seems to fail.

We require $\varphi : \mathfrak{M} \to \mathfrak{S} \otimes_{\sigma} \mathfrak{M}, \ \psi : \mathfrak{S} \otimes_{\sigma} \mathfrak{M} \to \mathfrak{M}$ such that $\varphi \psi = E = p$ and $\psi \varphi = E = p$. In particular, one of φ, ψ need not be trivial. Any linear algebra approach would require two matrices A_{φ}, A_{ψ} which factor *pl*.

< ロ > < 同 > < 回 > < 回 >

For example:

Theorem (Childs-Sauerberg, 1998)

Suppose $\mathcal{F} = \Theta^{-1} \mathbb{G}_m^n \Theta$ is defined over R. Suppose that $f_{\Theta} = (\Theta^{-1} \Theta^{(p)})^{-1} [p]_{\mathcal{F}}(\vec{x})$ is defined over R and

 $(\Theta^{-1}\Theta^{(p)})^{-1}[p]_{\mathcal{F}}(\vec{x}) \equiv \vec{x}^{(p)} \bmod \pi R.$

Then $H_{\Theta} = R[\vec{x}]/(f_{\Theta})$ is a Hopf order in KC_{ρ}^{n} .

What's the connection?

 Θ is used above to construct formal groups (generically isomorphic to \mathbb{G}_m^n) and isogenies.

 Θ in our work is used to construct Hopf algebras, which arise as cokernels of isogenies.

Another example

Let *K* be a totally ramified extension of W(k), and let L/K be Galois, $Gal(L/K) = C_{p^n}$.

Theorem (Kohl, 1998)

There are p^{n-1} Hopf Galois structures on L/K.

Since the Hopf algebras are all contained in LC_{p^n} they are necessarily abelian of rank p^n .

The work here could possibly describe their Hopf orders.

This is one of many such results from Byott, Childs, Kohl, etc.

We only require L/K abelian of *p*-power rank.

イロト イヨト イヨト イヨト

Decide whether this is worth pursuing

Is it?

Alan Koch (Agnes Scott College)

2

イロト イ理ト イヨト イヨト

Decide whether this is worth pursuing

Upsides to using Breuil-Kisin modules:

- Easy to understand the theory (at least in characteristic zero)
- Can offer linear algebra solutions to Hopf algebra problems
- Offers insight when transitioning from KG to more general H
- There appears to be some compatibility between Hopf orders in characteristics 0 and p when the Hopf algebras are defined both places
- Offers support to well-known conjectures (e.g. Hopf orders use n(n+1)/2 parameters).

Downsides to using Breuil-Kisin modules:

- Working out exact correspondences continues to be very difficult
- Theory only works for H commutative (and cocommutative)
- Without an "initial" or "terminal" Hopf order, some orders may be hard to find (ex: *H* = *KC_p* ⊗ *KC^{*}_p*).

Decide whether this is worth pursuing

Upsides to using Breuil-Kisin modules:

- Easy to understand the theory (at least in characteristic zero)
- Can offer linear algebra solutions to Hopf algebra problems
- Offers insight when transitioning from *KG* to more general *H*
- There appears to be some compatibility between Hopf orders in characteristics 0 and p when the Hopf algebras are defined both places
- Offers support to well-known conjectures (e.g. Hopf orders use n(n+1)/2 parameters).

Downsides to using Breuil-Kisin modules:

- Working out exact correspondences continues to be very difficult
- Theory only works for H commutative (and cocommutative)
- Without an "initial" or "terminal" Hopf order, some orders may be hard to find (ex: H = KC_p ⊗ KC^{*}_p)
- You have to sit there for an hour each year and listen to me talk about them.

I wanted 50 slides.

æ

イロン イ理 とく ヨン イヨン

Thank you.

æ

イロト イロト イヨト イヨト